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An equilibrium boundary element method is proposed for solving boundary-value problems in the 

theory of elasticity, thermo-elasticity, the dynamical theory of elasticity, bar torsion calculations, and the 

bending of a plate. The idea is to use simultaneously the method of constructing bundles of functions 

which exactly satisfy the equilibrium equations, the boundary variational equations of mechanics, and 

the methods of discrete finite-element approximation. The variational method of constructing the 

resolving boundary equations ensures that the linear system is symmetric and easily coupled to the finite- 

element method. Since volume integrals are eliminated the dimensions of the problem are reduced by 

one, but, unlike the boundary element method, there is no need to know the fundamental solutions. The 

solution of some bar torsion and plate bending problems confirms the high numerical efficiency of the 

method. 

THE IDEA behind the equilibrium boundary element method (EBEM) [l] is the simultaneous 
use of discrete finite-element approximation principles [2], the methods of constructing basis 
function systems that exactly satisfy the equilibrium displacement differential equations [3-151, 
and the boundary variational equations of mechanics [8, 16-191. Inside the body all the 
necessary equations are satisfied identically, hence the finite-element grid need only be 
constructed on the boundary. To determine the displacements of the boundary nodes, boundary 
variational equations are constructed which do not contain volume integrals. Thus, as in the 
boundary element method [4], one can reduce the dimensions of the problem by one, but unlike 
the latter, there is no need to use singular fundamental solutions. Here the variational method of 
construction ensures the symmetry of the resolving systems of linear equations and ease of 
coupling of EBEM to the finite-element method [l]. 

Unlike [16-191, non-singular basis polynomial solutions [3] are used below. This facilitates 
the numerical implementation of the method. Moreover, the boundary variational equations 
that are used can be obtained from a generalized Hu-Washizu variational principle [7], and the 
functional has the dimensions of energy. (Previous methods used were the collocation or least- 
squares methods [3, 161, “non-mechanical” functionals [17], and a truncated functional that 
only takes force boundary conditions into account [18, 191.) Finally, in many of these papers 
[3, 5, 16-201 few or no examples of the practical implementation of the method for solving 
boundary-value problems were given. In its concepts the present paper is close to [21], which 
used both polynomial fundamental solutions and similar “energetic” variational equations, but 
only applied to plane elasticity problems. 

The high numerical efficiency of the EBEM is due to the low order of the resolving symmetric 
systems of linear equations, as is confirmed by a range of test problems. 

tPrik1. Mat. Mekh. Vol. 51, No. 6, pp. 69-78. 1993. 
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The existence of known representations of general solutions in terms of harmonic or other 
special functions for many classes of problems, the development of automated construction 
methods for equilibrium approximations, the possibility of optimal choice of the order and 
band-width of the resolving system of equations and the relative simplicity of the 
implementation make the EBEM a promising numerical method for solving static and dynamic 
boundary-value problems in the theory of elasticity for piecewise-homogeneous bodies, 
comparable in universality with the finite and boundary-element methods, and complementing 
them. 

1. THE BOUNDARY-VALUE PROBLEM OFTHE THEORY OF ELASTICITY 

Suppose that a three-dimensional homogeneous anisotropic body occupies a volume V 
bounded by a surface S. Under the action of known body forces 6 and boundary loads pi”, 
specified on a part S, of the boundary, stresses oij occur in the body which cause strains E~ 
and displacements ui. Inside the body the stresses must satisfy the equilibrium differential 
equations 

0ii.j +~ =O 

and on the boundary, the force boundary conditions 

with the stresses and strains related by the generalized Hooke’s law 

(1.1) 

(1.2) 

(1.3) 

and the deformations and displacements by the Cauchy formulae 

EU = %bk,l + %.k) (1.4) 

Substituting (1.4) and (1.3) into (1.1) we obtain the displacement equilibrium equations 

MiiUj +~ =yzdiikl(Uk,lj +U,,.)+F; =O (1.5) 

where i$ is a known second-order differential operator. Of the infinite number of solutions of 
these equations the correct ones are those that are identical on the boundary S, with specified 
displacements y 

ui = U: on S, (1.6) 

Formulae (l.l)-(1.6) use the convention of summation over repeated indices, ?rj are the 
direction cosines of the outward normals to the surface, and diikl is the symmetric tensor of the 
elastic constants of the anisotropic material (i,j, k, 1= 1, 2,3). 

2. EQUILIBRIUM APPROXIMATION OF GENERAL FORM 

To satisfy the equilibrium differential equations (1.5) exactly we represent the displacements 
by the following series with undetermined coefficients ci 

ui = ugi + C,Uli +...+ c,u”i (2.1) 
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where u, is some particular solution of the inhomogeneous equation (1.5) 

lupoj +I;; =o (2.2) 

and the functions U, satisfy the appropriate homogeneous equations 

Miiuki =o, k = l,...,n (2.3) 

For any choice of coefficients ci the approximation (2.1) is an equilibrium approximation, i.e. 
the displacements defined using it satisfy the equilibrium differential equations identically. 

3. VARIATIONAL-BOUNDARY EQUATIONS 

To solve the boundary-value problem approximately it remains to choose coefficients ci so 
that the kinematic boundary conditions (1.6) and force boundary conditions (1.2) are optimally 
satisfied. 

To do this one can use various methods. For example, to find the ci it was suggested in [3] 
that the collocation method should be used, considering boundary conditions (1.2) and (1.6) at 
each of n chosen boundary points. However, firstly, the satisfaction of boundary conditions at 
several points does not guarantee that they will be satisfied between those points. Secondly, the 
collocation method leads to non-symmetric systems of linear equations. Thirdly, the 
conditioning of the resolving system of linear equations depends significantly on the choice of 
collocation points, and it is not in general clear how to choose them optimally. 

With the method of least squares for determining the equilibrium expansion coefficients, it 
has been shown [5] that to obtain reliable solutions it is necessary to ensure not just “mean- 
square” convergence of the approximate to the exact functions, but also of their derivatives, 
which complicates the method considerably. Moreover, the conditioning of the resolving system 
of linear equations in the method of least squares is asymptotically much worse than in the 
collocation method [16]. 

Variational approaches derived from the well-known boundary variational equations of 
mechanics [l, 7,8,18,19,21] are the most hopeful. Firstly, they allow one to attach a mechanical 
interpretation to each equation. Secondly, for every problem one can explicitly construct an 
energy functional, which enables one to use the rich arsenal of the variational calculus. Thirdly, 
variational methods, as a rule, lead to symmetric systems of linear equations, which is highly 
desirable from a computational point of view. 

To construct variational equations for the EBEM we write the Lagrange functional [6], using 
Lagrange multipliers [7] to add terms to it that include the error in the boundary displacements 
on the part of the surface S, 

n(Uj) = .{(Y&Eiioii --UiF;))dV- IUip,‘(is- I~i(Ui -U:)ds 
V s, 4 

(3.1) 

We integrate by parts the first term in the volume integral, having first expressed with the help 
of (1.4) the deformation in terms of the displacements 

n(“i I= -I{J$ ui"v, j + Ui&)dV+ I~UipidS- lUip,‘ds- Ipi(Ui -Ut)~ 
V s s, Sl 

(3.2) 

We then use the equilibrium of the approximations for the displacements and constraints 
(1.3), (1.4). This leads to a well-known boundary condition functional [8] 

n<@i>=-jW”iQjV+ l”io$pi -P~)cis- Ipi(WUi -Ut)dS 
V s, $ 

(3.3) 
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Using the fact that for an exact solution of the boundary-value problem the functional (3.3) 
should have a stationary value, we arrive at the following variational equation [l, 7, 81 

sn(U,)= fGUj(pj -p,~)~- fGpi(Ui -Ur)dS=O (3.4) 
% Sl 

where 6ui and Spi are the virtual displacements and loads at the boundary of the body. 
The variational equation (3.4) does not contain volume integrals, which is its principal differ- 

ence from the most commonly used variational equations of Lagrange, Reissner, Castigliano, 
etc. functionals in numerical methods of mechanics. 

4. EQUILIBRIUM SUPERELEMENTS, THEIR BASIS FUNCTIONS, AND STIFFNESS 
MATRICES 

We identify each homogeneous subdomain of the body with a single superelement, which in 
general has arbitrary shape and a variable number of boundary nodes. Suppose that an 
equilibrium approximation (2.1) has been constructed for some superelement. We choose 
m = n 13 nodes on the boundary of the superelement and substitute the coordinates of each of 
them into formula (2.1). We obtain as a result n linear equations for n coefficients ci, from 
which one can express the ci in terms of the displacements of the boundary nodes. We then 
substitute the ci obtained into (2.1) and assume that the particular solution hi can be exactly 
reproduced by a linear combination of the functions u,. As a result we obtain the final 
representations for the displace.lrents 

ui = Nir I”)r (4.1) 

where the {u}, are displacements of the superelement boundary nodes (r = 1, . . . , n), and the ZV, 
are basis functions for the superelement. 

Note the difference between the basis functions of the superelement and the usual basis 
functions used in the finite-element method [2]. Firstly, each trio of basis functions N,,, IV,, 
IV9 satisfies th, -lomogeneous differential equations for displacement equilibrium identically. 
Secondly, different components of the displacements are approximated by different basis 
functions. Thirdly, a certain component of the displacements is defined not only by the node 
values of that component, but by the node values of other components. 

Having constructed the approximations for the displacements, from the subsequent formulae 
(1.2)-(1.4) one can construct approximations for the strains, stresses, loads and their variations 

Ekl = ti(Nk,., + 4r.k I= 4,, IUI, 

oij = 4jkl4&), = S,,{~], 

Pi = njSij,{U), = &{U}, 

6Ui =Nir{6U},, 6pi = 4,(6U), 

(4.2) 

After substituting the required approximations into the variational equation (3.4) and using 
the arbitrariness of the node values of the virtual clrsplacements we arrive at a system of linear 
equations for the equilibrium of the superelement 

K,, = f Nip Li,dS - I Li,Ni,dS 
R? 4 (4.3) 
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with rigidity matrix K and load vector (Q}. 
Combining similar systems of equations for all equilibrium superelements by the method 

described in [l] we obtain a general system of linear equations for the entire body. After solving 
it using (4.1) and (4.2) one can compute the displacements, strains and stresses at any point of 
the body. 

Note that the stiffness matrix is symmetric. This is easy to prove, using the equilibrium of the 
displacement approximation and the well-known variational relation [7] 

1 GUipids = j SPi”ids 
S s 

(4.4) 

5. THE BOUNDARY ELEMENT MODEL OFTHE BODY 

To calculate the stiffness matrix and the load vector the surface of the superelement is 
partitioned into a set of simply-shaped boundary elements (BEs). The BEs are divided into two 
classes: BEs which belong to the part S, of the surface where the displacements (1.6) are 
specified, and BEs for the part S, of the surface where the loads (1.2) are specified. For BEs of 
each class the corresponding stiffness matrix and load vector components are computed 
numerically by integrating by quadratures. The matrix elements are then joined together as in 
the finite-element method. 

Note that for body forces of complicated form it is not always possible to construct a 
particular solution u, for the inhomogeneous equation (2.2). In this case the equilibrium 
equation (2.1) has to be used without hi. Then in the resolving equations (4.3) the following 
additional vector of volume loads occurs 

(5.1) 

To compute it, the interior of the superelement has to be partitioned into a set of finite 
elements, and approximations and integrations are performed on each of the latter using well- 
known methods [l, 21. 

6. BAR TORSION PROBLEMS 

In Saint-Venant boundary-value problems for the torsion of bars with complicated shape, 
from the solution of the differential equation 

it is required to find the stress function 
section of the bar 

Nx, y) that vanishes on the contour C of the cross- 

cp=O on C 

An equilibrium approximation of type (2.1) can be written in the form 

(6-l) 

(6.2) 

cp(x,y)~-(x2+y2)/2+c,H,+...+c*H, (6.3) 

where the Hi are harmonic polynomials satisfying the two-dimensional Laplace equation, for 
example power polynomials of the form [3] 
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H,=l, H2=n, H3=y, H4=x2-y*, H,=Qy 

H, =x3 -3xy*, H7 =3x*y-y3,. H, =x4 -6x*y* +y4 

H9 =4x3y-4xy3,... (6.4) 

The resolving system of linear equations for finding the approximation coefficients has the 
form 

where, to determine the coefficient c,, it is convenient to use the method of least squares [l]. 
The BEs are curvilinear segments. 

7. BENDING PROBLEMS FORTHIN ISOTROPIC PLATES 

The bending of a plate of stiffness D under the action of a load p is governed by the well- 
known Sophie Germain equation [9] 

d4w+2 a4w a4w+e=0 - - 
ax4 ax*** + ay4 D (7.1) 

The equilibrium approximation is given by the sum of the particular solution IV,, which is 
usually easy to construct, and the biharmonic function w,, which with the help of Almansi’s 
formula [3] can be expressed in terms of two harmonic functions cpl and cpz 

WI =‘pr +(x2 +Y2)(P* (7.2) 

each of which can be represented as a series in the harmonic polynomials (6.4). 
The BEs are curvilinear segments. 

8. THREE-DIMENSIONAL PROBLEMS WITH AN ELASTIC ISOTROPIC BODY 

According to the Papkovich-Neuber representation [lo, 111 the general solution of the system 
of homogeneous differential equations (1.5) can be represented in terms of three harmonic 
functions (pl, (pz, ‘ps as follows (v is Poisson’s ratio) 

Each of the functions cpi can be represented as a series in known particular solutions of the 
three-dimensional Laplace equation, for example, in terms of the complete system of three- 
dimensional harmonic polynomials [3] 

l;x,y,z; z* -x*,x* -y*,xy,yz,Zr; z3 -3x*2, 

-22 + y*z, - 3x2 + x3 ,-x3 +3xy*, yz* -x*y,xyz;... (8.2) 

As well as the above polynomial representations, one can also use other systems of harmonic 
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functions. For example, the completeness and linear independence of the functions 

{(X-Xi)* +(_Y-yi)* +(Z-Zi) 2 -% } (8.3) 

was proved in [16], where xi, yi, zi are coordinates of some auxiliary points, usually chosen on 
a closed contour enclosing the interior of the body. 

For a three-dimensional body the BEs can be triangular or rectangular curvilinear iso- 
parametric elements [l, 41. 

9. PLANE PROBLEMS IN THE THEORY OFELASTICITY 

Representations of the displacements u, and U, in terms of two harmonic functions can be 
obtained from (8.1) if one puts u, = 0 (pS = 0, and for a plane loaded stated 01-l = 4(1- 2v)l(l- v). 
Similar representations for axisymmetric problems are given in [12]. 

10. PROBLEMS IN ELASTIC THEORY OF AN ANISOTROPIC BODY 

Representations similar to those given above in terms of harmonic functions for general 
solutions of boundary-value problems are only known for certain special anisotropic cases [13]. 
In the general anisotropic case, to construct equilibrium approximations in the class of power 
polynomials one has to use the method of undetermined coefficients [l, 31, the essence of which 
is as follows. We represent the displacements in the form of power series 

Ui = UiiuX 
j k 1 

y Z (10.1) 

and substitute them into the homogeneous equations (1.5). After differentiation, each of the 
three equations becomes the condition for some polynomial with coefficients depending linearly 
on the uijk, to be zero 

bmnrxmynzr = 0 (10.2) 

The set of equations b,,,,,, =0 determines the constraint relations between the coefficients aijkl, 
from which it is necessary to choose 12 independent ones and denote them by c,, . . . , c, Taking 
account of these conditions in (10.1) we can obtain 3n functions uki of the equilibrium 
approximation (2.1). The process of constructing equilibrium approximations by the method of 
undetermined coefficients can easily be carried out on a computer. 

11. THERMO-ELASTICITY PROBLEMS 

The particular solution zc of the thermo-elasticity 
Papkovich-Goodier representation [lo] 

UOi = aa I aXi 

where Q, is a function satisfying Poisson’s equation 

a*@ l+vaT -=- 
axiaxi 1 -V 

problem can be obtained using the 

(11.1) 

(11.2) 

a is the coefficient of thermal expansion, and T is the known temperature of the body. 
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12. DYNAMICAL PROBLEMS IN THE THEORY OF ELASTICITY 

Using the well-known Green-Lam6 representation [14] 

u=gradcp+rotv (12.1) 

the displacements of an isotropic body can be expressed in terms of a scalar and vector potential 

3% 
xTC 

2 a% -=0, divv=O 
* axiaxi 

(12.2) 

where c, and c2 are known velocities of propagation of longitudinal and transverse waves in an 
infinite medium and t is the time. In the general case, the functions cp and w can be represented 
by series of known particular solutions of the wave equation [3,14,15], for example 

cp = A cos(wr + kixi + cl;), kik; = k* = co* / cf (12.3) 

13. EXAMPLES OF CALCULATIONS OF BAR TORSION 

The advantages of the EBEM compared with the other numerical methods are clearly illustrated in bar 
torsion problems. In particular, cross-section shapes exist (circle and equilateral triangle) for which the 
exact solution of the boundary-value problem (6.1), (6.2) can be obtained exactly for one equilibrium 
superelement with a small number of boundary nodes. For example, for an equilateral triangle of side a 

the exact solution [6] 

can be reproduced on a triangular superelement with seven boundary nodes. 
Unlike the preceding example, the exact solution 

cp(x~Y)=-~(f/4x* +Y* -1) 

for an ellipse [6] with semi-axes 2 and 1 cannot be exactly generated by the series (6.3). However, as shown 
by calculations, for an increasing number of boundary nodes m the approximate solution converges 
monotonically to the exact solution. For example, at the centre of the ellipse, instead of the exact value 

cp = 0.8 for m = 4, 8,16 we obtain the values 0.683,0.739,0.785, respectively. 
Figure 1 shows graphs illustrating the stable convergence of the numerical solutions to the exact 

solutions when the number of BEs increases, for the torsion problem for bars with square 1 s x, y =Z 1 and 

flag-shaped (Fig. 2) cross-sections. 
For example, consider the solution for a square with m = 12 BEs 

Cp(x,y)=-x(x* +y*)+O.5885-0.0972(x4-6x2y2 +y4) (13.1) 

This is an approximate solution for a square. However, there is a shape, approximately square, for which 
this solution is exact. The equation for this shape is obtained from (13.1) by replacing C&X, y) by zero. By 
increasing the number of BEs, the shapes for which the solutions obtained are exact tend closer and closer 

to a square. This is shown in Fig. 3. 
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FIG. 1. F10.2 

FIN .3. 

14. EXAMPLES OF CALCULATIONS FOR THE BENDING OF CLAMPED PLATES 

Table 1 gives data illustrating the convergence, as the number m of BE-s increases, of the deflection A 
and bending moments IU, and M, of circular (r= l), square (0 = b= 2) and rectangular (a = 1, b= 2) 
plates to the solutions obtained in [9] by analytic methods of expansion in trigonometric functions 

pl D = 1, v = 0.3. 
The efficiency of the EBEM is also confirmed by calculations for more complicated plates. For example, 

effective convergence with an error of less than 1% is observed with m = 36 for a plate in the shape of an 

isosceles trapezium with base lengths 3 and 1 and an angle of 4Y between the lower base and the lateral 
side. Here the maximum deflection and bending moment are observed at the midpoint of the centre line of 
the trapezium and are equal to 0.1517 and 1.1641, respectively, when pl D = 1, v = 0.3, which differs by less 
than 3% from the result obtained in [20] by the R-function method. 

We will now consider the bending by a uniform load of a rhomboidal plate fixed at its edges for various 
ratios a/b of the lengths of the diagonals. The boundary of the plate is partitioned uniformly into 32 linear 
BEs. Table 2 shows the values of the deflection A and bending moments IU, and My at various points on 
the major diagonal of the rhombus (x axis) when b = 1, pl D = 64, v = 0.3. Analysis of the results shows 
that as the ratio of the diagonals increases, there is an increase in the maximum deflection and bending 

moment, both of which occur at the centre of the plate. Note that at the comer point (a, 0) the bending 

moment is undefined, because the derivative is undefined. To calculate bending moments correctly in the 

neighbourhood of the corner points one must take into account the singular behaviour of solutions at 
irregular boundary points, which is beyond the scope of this paper. 

The EBEM is constructed using the variational equations of mechanics and hence guarantees the exact 
satisfaction of differential equations inside the plate and the integrated (non-exact!) satisfaction of the 
boundary conditions. The deflections calculated at the fixed boundary are not identical with the exact zero 
values. However, the error of the deflections at the boundary is fairly small and hence can be ignored. In 
particular, when alb=l; 2; 4 the maximum deflection at the boundary does not exceed 3, 5, 8%, 
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TABLE 1 

m Circle Square Rectangle 

A W A M, A M, 

4 0,622 0 0,689 0 3.59 0 
8 0.812 0.902 0.689 1.17 2.27 1.90 
16 0.949 0.975 0.825 1.07 0.94 1.64 
20 0.968 0.984 1.03 1.01 1.13 1.11 
24 0.977 0.989 1.03 1.01 1.06 1.05 
30 0:985 0.993 1.01 1.00 1.00 1.00 

TABLE 2 

Point 
coordinates a/b=1 

A K My 

(0.0) 0.327 2.956 2.956 
W4.0) 0.261 2.001 2,672 
W4.0) 0.119 -0.134 1,807 
(3a/4.0) 0.018 -1.374 0.433 
(4d4.0‘) 0.002 1.212 -0,941 

a/b=2 a/b=4 

A % Y 

0,959 4,223 5.686 
0.661 2.128 4.837 
0.183 -0.655 2,564 
0.012 -a239 0.612 
0.003 -0,422 0.647 

- 
A M, My 

1.604 3.845 8.101 
0.958 1.993 6.098 
0.115 a.217 2.323 
0,028 0.493 0.978 
0.008 -2.001 -3.260 

respectively, of the maximum deflection at the centre of the plate. The correct modelling of the plate 
stiffness is confirmed by comparing the maximum deflections with finite-element calculations when the 
plate is decomposed into 16 hybrid finite elements [l]. For a/b= 1; 2; 4 the latter give the values 0.320; 
0.859; 1.30, respectively. 

Thus, for plate calculations with various not-too-complicated shapes it is sufficient to restrict oneself to 

30-40 BEs, and by taking possible symmetry into account the number of BEs can be reduced considerably. 
Given that the time for a single calculation on an IBM PC/AT is no more than 5 minutes, one can say that 

a simple and efficient method has been created for calculating the bending of a plate of complicated shape. 

15. VERSIONS OF THE APPLICATION OF THE METHOD 

To calculate the deformation of homogeneous bodies whose shape is not too complicated one 
can use a single equilibrium superelement. For piecewise-homogeneous or homogeneous bodies 
of complicated shape one must use several elements and ensure they are matched [l]. Here, by 
varying the number and dimensions of the superelements one can achieve an optimal 
combination of the order and width of the strip of the global system of linear equations [l]. The 
limit in which the superelement decreases in size to the dimensions of a finite element reduces to 
the method of equilibrium finite elements [l]. A combination of the EBEM method with the 
finite-element method, in which the homogeneous part of the body is represented by an 
equilibrium superelement, and the remainder by finite elements, is very promising. 

In conclusion we remark that the EBEM, like the BEM, cannot be used to solve boundary- 
value problems described by systems of differential equations with variable coefficients, for 
example, to analyse plates or shells of variable thickness. The use of the method to calculate 
natural oscillations and non-linear boundary-value problems is very problematical, because 
one cannot just use boundary-element grids. One must also bear in mind that one of the 
disadvantages of the method, inherent in all variational methods, is that solutions near 
boundary corner points or points where the type of boundary condition changes are poorly 
modelled by smooth harmonic polynomials. For this one must use more complicated methods 
that take account of singularities. 
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The EBEM was implemented as part of the ASTRA Computer-aided System of Three- 
dimensional Equilibrium Analysis [ 11. 
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